146 research outputs found

    Results of the Mitrofanoff procedure in urinary tract reconstruction in children

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90139/1/j.1464-410X.1997.33724.x.pd

    Exploring improved holographic theories for QCD: Part II

    Get PDF
    This paper is a continuation of ArXiv:0707.1324 where improved holographic theories for QCD were set up and explored. Here, the IR confining geometries are classified and analyzed. They all end in a "good" (repulsive) singularity in the IR. The glueball spectra are gaped and discrete, and they favorably compare to the lattice data. Quite generally, confinement and discrete spectra imply each other. Asymptotically linear glueball masses can also be achieved. Asymptotic mass ratios of various glueballs with different spin also turn out to be universal. Mesons dynamics is implemented via space filling D4-anti-D4 brane pairs. The associated tachyon dynamics is analyzed and chiral symmetry breaking is shown. The dynamics of the RR axion is analyzed, and the non-perturbative running of the QCD theta-angle is obtained. It is shown to always vanish in the IR.Comment: 65+18 pages, 20 figures (v3) Some modifications in Appendix E explaining in more detail the issue of initial conditions; typos corrected. Published versio

    Exploring improved holographic theories for QCD: Part I

    Get PDF
    Various holographic approaches to QCD in five dimensions are explored using input both from the putative non-critical string theory as well as QCD. It is argued that a gravity theory in five dimensions coupled to a dilaton and an axion may capture the important qualitative features of pure QCD. A part of the higher alpha' corrections are resummed into a dilaton potential. The potential is shown to be in one-to-one correspondence with the exact beta-function of QCD, and its knowledge determines the full structure of the vacuum solution. The geometry near the UV boundary is that of AdS_5 with logarithmic corrections reflecting the asymptotic freedom of QCD. We find that all relevant confining backgrounds have an IR singularity of the "good" kind that allows unambiguous spectrum computations. Near the singularity the 't Hooft coupling is driven to infinity. Asymptotically linear glueball masses can also be achieved. The classification of all confining asymptotics, the associated glueball spectra and meson dynamics are addressed in a companion paper, ArXiv:0707.1349Comment: 37+23 pages, 11 figures. (v3) Some clarifications and typo corrections. Journal versio

    KK Parity in Warped Extra Dimension

    Get PDF
    We construct models with a Kaluza-Klein (KK) parity in a five- dimensional warped geometry, in an attempt to address the little hierarchy problem present in setups with bulk Standard Model fields. The lightest KK particle (LKP) is stable and can play the role of dark matter. We consider the possibilities of gluing two identical slices of 5D AdS in either the UV (IR-UV-IR model) or the IR region (UV-IR-UV model) and discuss the model-building issues as well as phenomenological properties in both cases. In particular, we find that the UV-IR-UV model is not gravitationally stable and that additional mechanisms might be required in the IR-UV-IR model in order to address flavor issues. Collider signals of the warped KK parity are different from either the conventional warped extra dimension without KK parity, in which the new particles are not necessarily pair-produced, or the KK parity in flat universal extra dimensions, where each KK level is nearly degenerate in mass. Dark matter and collider properties of a TeV mass KK Z gauge boson as the LKP are discussed.Comment: 35 pages, 11 figure

    Drag and jet quenching of heavy quarks in a strongly coupled N=2* plasma

    Full text link
    The drag of a heavy quark and the jet quenching parameter are studied in the strongly coupled N=2* plasma using the AdS/CFT correspondence. Both increase in units of the spatial string tension as the theory departs from conformal invariance. The description of heavy quark dynamics using a Langevin equation is also considered. It is found that the difference between the velocity dependent factors of the transverse and longitudinal momentum broadening of the quark admit an interpretation in terms of relativistic effects, so the distribution is spherical in the quark rest frame. When conformal invariance is broken there is a broadening of the longitudinal momentum distribution. This effect may be useful in understanding the jet distribution observed in experiments.Comment: 30 pages, 5 figures, references added, minor corrections. To be published in JHE

    Hard Dense Loops in a Cold Non-Abelian Plasma

    Get PDF
    Classical transport theory is used to study the response of a non-Abelian plasma at zero temperature and high chemical potential to weak color electromagnetic fields. In this article the parallelism between the transport phenomena occurring in a non-Abelian plasma at high temperature and high density is stressed. Particularly, it is shown that at high densities it is also possible to relate the transport equations to the zero-curvature condition of a Chern-Simons theory in three dimensions, even when quarks are not considered ultrarelativistic. The induced color current in the cold plasma can be expressed as an average over angles, which represent the directions of the velocity vectors of quarks having Fermi energy. From this color current it is possible to compute nn-point gluonic amplitudes, with arbitrary nn. It is argued that these amplitudes are the same as the ones computed in the high chemical potential limit of QCD, that are then called hard dense loops. The agreement between the two different formalisms is checked by computing the polarization tensor of QED due to finite density effects in the high density limit.Comment: 16 pages, Revtex, final version to appear in Phys. Rev. D with minor correction

    Critical Behavior of O(n)-symmetric Systems With Reversible Mode-coupling Terms: Stability Against Detailed-balance Violation

    Full text link
    We investigate nonequilibrium critical properties of O(n)O(n)-symmetric models with reversible mode-coupling terms. Specifically, a variant of the model of Sasv\'ari, Schwabl, and Sz\'epfalusy is studied, where violation of detailed balance is incorporated by allowing the order parameter and the dynamically coupled conserved quantities to be governed by heat baths of different temperatures TST_S and TMT_M, respectively. Dynamic perturbation theory and the field-theoretic renormalization group are applied to one-loop order, and yield two new fixed points in addition to the equilibrium ones. The first one corresponds to Θ=TS/TM=\Theta = T_S / T_M = \infty and leads to model A critical behavior for the order parameter and to anomalous noise correlations for the generalized angular momenta; the second one is at Θ=0\Theta = 0 and is characterized by mean-field behavior of the conserved quantities, by a dynamic exponent z=d/2z = d / 2 equal to that of the equilibrium SSS model, and by modified static critical exponents. However, both these new fixed points are unstable, and upon approaching the critical point detailed balance is restored, and the equilibrium static and dynamic critical properties are recovered.Comment: 18 pages, RevTeX, 1 figure included as eps-file; submitted to Phys. Rev.

    On the geometrization of matter by exotic smoothness

    Full text link
    In this paper we discuss the question how matter may emerge from space. For that purpose we consider the smoothness structure of spacetime as underlying structure for a geometrical model of matter. For a large class of compact 4-manifolds, the elliptic surfaces, one is able to apply the knot surgery of Fintushel and Stern to change the smoothness structure. The influence of this surgery to the Einstein-Hilbert action is discussed. Using the Weierstrass representation, we are able to show that the knotted torus used in knot surgery is represented by a spinor fulfilling the Dirac equation and leading to a mass-less Dirac term in the Einstein-Hilbert action. For sufficient complicated links and knots, there are "connecting tubes" (graph manifolds, torus bundles) which introduce an action term of a gauge field. Both terms are genuinely geometrical and characterized by the mean curvature of the components. We also discuss the gauge group of the theory to be U(1)xSU(2)xSU(3).Comment: 30 pages, 3 figures, svjour style, complete reworking now using Fintushel-Stern knot surgery of elliptic surfaces, discussion of Lorentz metric and global hyperbolicity for exotic 4-manifolds added, final version for publication in Gen. Rel. Grav, small typos errors fixe

    Cluster Expansion Approach to the Effective Potential in Φ2+14\Phi^4_{2+1}-Theory

    Full text link
    We apply a truncated set of dynamical equations of motion for connected equal-time Green functions up to the 4-point level to the investigation of spontaneous ground state symmetry breaking in Φ2+14\Phi^4_{2+1} quantum field theory. Within our momentum space discretization we obtain a second order phase transition as soon as the connected 3-point function is included. However, an additional inclusion of the connected 4-point function still shows a significant influence on the shape of the effective potential and the critical coupling.Comment: 1 compressed uuencoded postscript file with 5 figures included, 21 page

    Supersymmetric Dark Matter and Yukawa Unification

    Get PDF
    An analysis of supersymmetric dark matter under the Yukawa unification constraint is given. The analysis utilizes the recently discovered region of the parameter space of models with gaugino mass nonuniversalities where large negative supersymmetric corrections to the b quark mass appear to allow bτb-\tau unification for a positive μ\mu sign consistent with the bs+γb\to s+\gamma and gμ2g_{\mu}-2 constraints. In the present analysis we use the revised theoretical determination of aμSMa_{\mu}^{SM} (aμ=(gμ2)/2a_{\mu}= (g_{\mu}-2)/2) in computing the difference aμexpaμSMa_{\mu}^{exp}-a_{\mu}^{SM} which takes account of a reevaluation of the light by light contribution which has a positive sign. The analysis shows that the region of the parameter space with nonuniversalities of the gaugino masses which allows for unification of Yukawa couplings also contains regions which allow satisfaction of the relic density constraint. Specifically we find that the lightest neutralino mass consistent with the relic density constraint, bτb\tau unification for SU(5) and btτb-t-\tau unification for SO(10) in addition to other constraints lies in the region below 80 GeV. An analysis of the maximum and the minimum neutralino-proton scalar cross section for the allowed parameter space including the effect of a new determination of the pion-nucleon sigma term is also given. It is found that the full parameter space for this class of models can be explored in the next generation of proposed dark matter detectors.Comment: 28 pages,nLatex including 5 fig
    corecore